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SUMMARY 
A simple queue with two heterogeneous servers is analyzed. The emphasis is on comparing the two-server 
heterogeneous and homogeneous systems with the restriction of an upper limit N on the queue size. The 
optimal service rates for both the servers are found in terms of the arrival rate and the traffic intensity O- 
The average characteristics of the heterogeneous system are minimized, and their improvement over the 
corresponding homogeneous system characteristics is established. For different values of N and O, tables 
are given which compare the average characteristics of the two systems. 

1. Introduction 

In a queuing system with more than one server, one is confronted with the problem of 

whether the servers should have equal service rates or different service rates. The former 

situation is referred to as a queuing system with homogeneous servers, the later as a queuing 
system with heterogeneous servers. Unless the situation is mechanically controlled, the case 
of  heterogeneous servers is more applicable in practice, but it is hard to study f rom a 
mathematical point of  view. 

In this paper we analyze a Markovian queuing system with heterogeneous servers under 
the assumption of finite waiting space. We investigate the condition under which a two 
server heterogeneous system is better than the corresponding homogeneous system. This 
condition only involves the traffic intensity, p, and the service rates. The two systems are 
compared by replacing the service rate for each server in the homogeneous system by the 
average service rate of  the corresponding heterogeneous system. 

The heterogeneous system under consideration is such that one server is faster than the 
other and there cannot be more than N customers in the system at any time. The expressions 
for the optimal service rates of  the two servers are obtained in terms of  the arrival rate and 
the traffic intensity, p. These expressions are such that they minimize the average charac- 
teristics of the heterogeneous system and yield an improvement over the corresponding 
homogeneous system. For  different values of  N and p, Table 1 compares the average 
number  of  the customers and the actual queue size in both the homogeneous and the 
heterogeneous systems. 

The related work on this problem has been discussed by Singh [1, 2]. 
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2. Statement of the problem 

Consider a queuing system with two servers, which is completely specified by the following: 

Arrival Pattern: 
Customers arrive to join a common waiting line, following the Poisson Law with mean 

arrival rate, 2. 
Service Mechanism: 
The service times of the two servers are independently and negative exponentially distri- 

buted with mean service rates #l and #2 (#i >/22) respectively. 
Queue Discipline: 
A customer arrives to find: 
1. Both servers free; he chooses the first server, since here he expects to get the faster 

service. 
2. Both servers busy; he joins the system as long as there are less than N customers in 

the system and waits in a line in order of  arrival. The customer at the top of  the queue 
occupies the server which becomes available first. After joining the system a customer 

does not renege, 
3. Only one server busy; he chooses the free server. 
The problem is to study this process (M/M~/2/N) and compare it with the corresponding 

homogeneous system (M/M/2/N). 

3. Analysis of the M]M~/2/N system 

Let 

P,(t) = probability that there are n customers in the system at t ime  t. 
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F o r  

n = 1, Pl( t )  = Plo(t)  + Pol(t) ,  (i) 

where 

Plo(t) = probability that the first server is occupied, and 

Pol(t) = probability that  the second server is occupied. 

Following the usual arguments, the differential-difference equations for the M/Mi/2/N 
system can be written as follows: 

P'o(t) = p~P~o(t) + P2Po~(t) - 2Po(t). 

P'lo(t) = --(2 + ga)Pio(t) + pzP2(t) + 2Po(t). 

P'o~(t) = - ( 2  + #z)Po~(t) + #iP2(t). 

P[,(t) = - ( 2  + p)P,,(t) + #P,+t ( t )  + ,~Pn-l(t), 1 < n < N. 

P'N(t) = --pPN(t) + )~PN- 1(0, 

where 

# = #l + P2 and P'(t) = dPn(t)/dt. 
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The following steady-state solution for the above system of  equations can be easily verified: 

- - 7  Po = 1 + C (2) 

where 

C -  
1 - p  N 2 (2+ / /2 )  

1 - p //1/~2(1 + 2p) 

p - -  
//i +/ /2  " 

,~(2 +//2) 
Px = #1#2(1 + 2p) Po- 

P.  = p " - I P  1, 2 <- n < N.  

The average characteristics of  the system are: 
(i) Average number of customers in the system: 

N 
E ( Q ) =  Z n P , = [ 1 - ( N  + 1)p N + N p  N+i] - 

n=0 

(ii) 

(3) 

(4) 

(5) 

P1 
(1 - p)Z" (6) 

Average queue length: 

E ( Q ' ) =  • (n - 2)P.  = [ 1 - ( N -  1)p N-z  + (N - 2)O N-l] P~. (7) 
n=3 

Similarly for the homogeneous system M / M / 2 / N ,  it can be verified that: 

1 - p  
e o  

and 

1 + p - 2p N+I ' 

P1 = 2pPo, 

(8) 

(9) 

Pn = Pn-IP1,  2 < n < N.  

The average characteristics in terms of Pa are the same as that of  the M / M J 2 / N  system. 

4. Comparison  between M]Mt[2IN and M[M]2]N systems 

In order to distinguish the state probabilities and the average characteristics of the hetero- 
geneous system, we use the asterisks on the symbols. For  example, P~ denotes the proba- 
bility that there are no customers in the heterogeneous system. For  comparison purposes 
we replace the service rate, p, of  the homogeneous system by the average service rate, 
l/1 q- //2/2, of  the corresponding heterogeneous system. It is to be pointed out that this 
substitution leaves p unaffected for both the systems. Furthermore the difference between 
the two systems lies in the tail with probabilities for n < 2, otherwise both have the geo- 
metric distribution for n > 2. As in Singh [2] we define a heterogeneous system to be 
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'!better" than the corresponding homogeneous system if P~ > Po and P* < P, for n > 1. 
The following theorem then gives a condition in terms of p and the service rates guaran- 

teeing that the M / M J 2 / N  system is better than the corresponding M / M / 2 / N  system. It is 
to be noted that this condition is independent of N. 

Theorem I: Given p and 2, a necessary and sufficient condition that a two server hetero- 
geneous system is better than the corresponding homogeneous system under the assumption 

o f  the finite waiting space is p < (#1/(#1 - #2)). Then, 

a E ( . )  = E ( . )  - E * ( . )  >__ o.  

Proof." Recall that for both the systems P, = p"-1p~ for n > 2, hence it suffices to compare 
the state probabilities for n = 0 and 1. 

From eqs. (8) and (9), we have 

I 1 1 - - P N ]  - i  
P i = 2 p P o = -~p + -1-- p ".J 

From eqs. (2), (3) and (4) we have 

2(2 + #z)P~ [ - # , # : ( 1 +  2p) 
P ~ =  

#1#2(1+2p) = / - - - - - - - - - - L  2 ( 2 + # 2 )  + -  

Now from eqs. (10) and (11) it follows that 

,~(,~ + #2) 
P* < P1 r < 2p. 

#1#2(1 + 2p) 

(10) 

1 - p ~ ] - i  
] - -  P J . (11) 

(12) 

Note that the above inequality also guarantees that P~ > Po. Algebraic simplification of 
eq. (12) gives 

#2 p < ~ (13) 
Pi - #z 

In order to show 5E( ) > 0, we use eqs. (6) and (7). 

6E(Q) = E(Q) - E*(Q) = [1 - (N + 1)p N + NpN+I](P a -- P'~)(1 -- p)-Z. (14) 

6E(Q') = E(Q') - E*(Q') = [1 - (N - 1)p N-2 + (N - 2)pN- q(P1 - P*)p2(1 - p)_h 

(15) 

In the two expressions above, the quantities in the brackets are non-negative and (Px - P~) 
is positive, from eqs. (12) and (13). Therefore it follows that fiE(.) ~ 0. 

Our next theorem gives the best allocation of the service rates, #i and P2, to the two 
servers~ minimizes E*(-) and yields an improvement over the corresponding homogeneous 
system. In this context we first prove a lemma which will be used in the theorem. 

Lemma: For f ixed  2 and p, f(#2) = (2 + #z)/[#2(2 - P#2)] is a strictly convex function 
o f  #z and achieves a unique minimum at #o = 2[(1 + p- i )~  _ 1]. 
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Proof." I t  is easy to see that  

1 / l ~ p )  1 
- -  - J r -  - -  _ . 

f(//2) /12 ()'/P //2) 

Let  

1 1 
f l ( / /z)  = -  and f2 (P2)-  

//2 (21p - -  //'/2) 

Then 

2 2 2 
f~(//2) = //3 > 0 and f~(//z) (2/p - / /2)  3 //3 > 0, 

and therefore f~(//2) and f2(//2) are strictly convex funct ions of / /z .  I t  is obvious that  f(//2) 
can be expressed as a positive linear combina t ion  o f f l ( / / 2  ) and f2(//2). N o w  strict con- 
vexity o f  f(//2) follows f rom the fact  that  the positive linear combina t ion  o f  two strictly 
convex functions is again strictly convex. 

In  order  to determine the min imum,  we find that  the s ta t ionary points  are given by 

1 ( l ~ p )  1 
f ' ( / /2)  = //2 -F - -  ()'/fl //'/2) 2 -- 0 

i.e., 

i.e., 

(1 + p) / /2  _ p //2 = o 

p#~ + 22p#2 -- 22 = 0. 

This is a quadrat ic  in P2 and has the following two roots :  

2(x/1 + p - 1  _ 1) and  - 2 ( x / l + p - 1  + 1) 

since we cannot  have P2 negative, therefore the only choice is #o = 2(x/1 + p - 1  _ 1). 
The  fact  tha t  this is a unique m i n i m u m  follows f rom strict convexity off(/ /2).  

T h e o r e m  I I :  For given N, 2 and p, po = 2[(1 + p - a ) ~  _ 1] is the best allocation to the 
second (i.e., slower) server. This #o minimizes E*(') of the M/M~/2/N system and gives the 
following reductions over the corresponding homogeneous system: 

fiE(Q) = [1 -- (N + 1)p N + NpN+X]K, (16) 

fiE(a') = [1 - (N - 1)p N-2 + (N - 2)pN-a]pZK, (17) 

where 

K 

l + p - 2 p  N+I l + ( 1 - p ) ( l + 2 p )  - - I + P  1 
2 

P 

> 0 .  
_ pN 

(18) 
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Proof." From eqs. (3) and (4), after substituting/q = 2/p - #2 it can be seen that P* is a 

convex function of P2. 

p ~ =  1 - p  [ 1 (19) 
1 - pN 1 -- p(1 -- pN))~ 

L 1 + (1 - p)(1 + 2p)f(#2) 

Now it follows from the Lemma that #o = 2{Ix/(1 + p)/p] - 1} minimizes P*. It is easy 
to see that It ~ maximizes P* and minimizes P* for 1 < n < N. For  fixed N, ~ and p, 
E*( ' )  only depend upon P* and therefore #o also minimizes E*(.).  

W e  next observe that 

2f(#0) = p - i [ (  1 + p-a)~ _ 1]-2 

and therefore from eq. (19) we have after algebraic simplification 

, , ,  (1 - p) 
1-1 (j ) 1 - p N + ( 1 - p ) ( 1  + 2 p )  1 + p  1 2 

P 

(20) 

(21) 

Now eqs. (16) and (17) follow from eqs. (14) and (15) and the fact that 

P1 - P* = (1 - p)ZK 

where 

1 2p 
K -  

l - p  
1 + p - 2p u+~ (x/ ~ + p 

1 + (1 - ; ) (1  + 2p)  p 

In order to show that K is positive, we assume on the contrary that K < 0, then 

X/1 + P  
2p + 2p(1 - p)(1 + 2p) p 

)2 
1 - 2 p  u + 1 <  1 + p - 2 p  u +1 

(j )2 
l + p  1 <=1, i.e., 2p(1 + 2p) P 

/ 1 + P 
i.e., 2(1 + 2p) 2 - 1 < 4p(1 + 2 p ) , [  

P 

i.e., 4(1 + 2p) 4 - 4(1 + 2p) 2 + 1 < 16p(l + 2p)2(1 + p), 

which is impossible. Therefore K is positive. 

In order to see the validity of Theorem II, for different values of N, we present in Table 1 
the average number of customers E(Q) and the actual queue length E(Q') for the M/M/2/N 
and M/ MJ 2 / N  systems. These tables are for N = 5, 10, 20, 30, 40, 50, 75, 100, 125 and 
150, and p = .1, .2 . . . . .  .9, .999. It is to be noted that the value p = 1 corresponds to 
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A heterogeneous system with finite waiting space 

TABLE 1 

Average characteristics in M/M]2/N and M/Mi/2/N system for different values of N. 

131 

Table for N = 5 

p E(Q) E*(Q) E(Q') E*(Q') %E(') 

0.1 0.2020 0.1635 0.0020 0.0016 19.0711 
0.2 0.4160 0.3722 0.0162 0.0145 10.5327 
0.3 0.6529 0.6122 0.0544 0.0510 6.2278 
0.4 0.9187 0.8837 0.1258 0.1210 3.8153 
0.5 1.2128 1.1838 0.2340 0.2285 2.3858 
0.6 1.5266 1.5036 0.3762 0.3705 1.5112 
0.7 1.8474 1.8295 0.5438 0.5385 0.9663 
0.8 2.1612 2.1478 0.7256 0.7211 0.6232 
0.9 2.4570 2.4470 0.9109 0.9072 0.4057 
1.0 2.7247 2.7174 1.0892 1.0862 0.2680 

Table ]or N = 10 

p E(Q) E*(Q) E(Q') E*(Q') %E(.) 

0.1 0.2020 0.1635 0.0020 0.0016 19.0711 
0.2 0.4167 0.3728 0.0167 0.0149 10.5317 
0.3 0.6593 0.6183 0.0593 0.0556 6.2212 
0.4 0.9517 0.9156 0.1518 0.1461 3.7940 
0.5 1.3264 1.2954 0.3270 0.3194 2.3388 
0.6 1.8266 1.8005 0.6302 0.6212 1.4307 
0.7 2.4929 2.4716 1.1072 1.0978 0.8533 
0.8 3.3307 3.3144 1.7729 1.7642 0.4889 
0.9 4.2814 4.2700 2.5801 2.5732 0.2673 
1.0 5.2289 5.2215 3.4202 3.4154 0.1409 

Table for N = 20 

p E(Q) E*(Q) E(Q') E*(Q') HE(') 

0.1 0.2020 0.1635 0.0020 0.0016 19.0711 
0.2 0.4167 0.3728 0.0167 0.0149 10.5317 
0.3 0.6593 0.6183 0.0593 0.0556 6.2212 
0.4 0.9524 0.9162 0.1524 0.1466 3.7938 
0.5 1.3333 1.3022 0.3333 0.3255 2.3373 
0.6 1.8744 1.8477 0.6745 0.6648 1.4244 
0,7 2.7316 2.7088 1.3320 1.3208 0.8342 
0.8 4.2316 4.2127 2.6357 2.6240 0.4470 
0.9 8.8018 6.7880 5.0278 5.0176 0.2024 
1.0 10.2088 10.2014 8.3073 8.3013 0.0728 
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TABLE 1, continued 

Table for N = 30 

p E(Q) E*(Q) E(Q') E*(Q') HE(" ) 

0.1 0.2020 0.1635 0.0020 0.0016 19.0711 
0.2 0.4167 0.3728 0.0167 0.0149 10.5317 
0.3 0.6593 0.6183 0.0593 0.0556 6.2212 
0.4 0.9524 0.9162 0.1524 0.1466 3.7938 
0.5 1.3333 1.3022 0.3333 0.3255 2.3373 
0.6 1,8750 1.8483 0,6750 0.6654 1.4243 
0.7 2.7445 2.7217 1.3445 1.3333 0.8336 
0.8 4.4108 4.3912 2.8112 2.7988 0.4430 
0.9 8.1965 8.1812 6.4048 6.3929 0.1866 
1.0 15.1683 15.1609 13.2348 13.2284 0.0490 

Table for N = 40 

p E(Q) E*(Q) E(Q') E*(Q') %E(') 

0.1 0.2020 0.1635 0.0020 0.0016 19.0711 
0.2 0,4167 0.3728 0,0167 0.0149 10.5317 
0.3 0.6593 0.6183 0.0593 0.0556 6.2212 
0.4 0.9524 0.9162 0.1524 0.1466 3.7938 
0.5 1.3333 1.3022 0.3333 0.3255 2.3373 
0.6 1.8750 1.8483 0.6750 0.6654 1.4243 
0.7 2.7451 2.7222 1.3451 1.3339 0.8336 
0.8 4.4397 4.4200 2.8397 2.8271 0.4425 
0.9 8.8981 8.8820 7.1010 7.0881 0,1817 
1.0 20.1101 20.1027 18,1605 18.1537 0.0371 

Table ]br N = 50 

p E(Q) E*(Q) E(Q') E*(Q') %E(. ) 

0.1 0.2020 0.1635 0.0020 0.0016 
0.2 0.4167 0.3728 0.0167 0.0149 
0.3 0.6593 0.6183 0.0593 0.0556 
0.4 0.9524 0.9162 0,1524 0.1466 
0.5 1.3333 1.3022 0.3333 0.3255 
0.6 1.8750 1.8483 0.6750 0.6654 
0.7 2.745l 2.7222 1.3451 1.3339 
0.8 4.4438 4.4241 2.8438 2.8312 
0.9 9.2258 9.2092 7.4268 7.4134 
1.0 25.0349 25.0274 23.0755 23.0686 

19,0711 
[0.5317 
6.2212 
3.7938 
2.3373 
1.4243 
0.8336 
0.4425 
0.1800 
0.0299 

Table for N = 75 

p E(Q) E*(Q) E(Q') E*(Q') %E(. ) 

0.1 0.2020 0.1635 0.0020 0.0016 19.0711 
0.2 0.4167 0.3728 0.0167 0.0149 10.5317 
0.3 0.6593 0.6183 0.0593 0.0556 6.2212 
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TABLE 1, continued 

0.4 0.9524 0.9162 0.1524 0.1466 3.7938 
0.5 1.3333 1.3022 0.3333 0.3255 2.3373 
0.6 1.8750 1.8483 0.6750 0.6654 1.4243 
0.7 2.7451 2.7222 1.3451 1.3339 0.8336 
0.8 4.4444 4.4248 2.8444 2.8319 0.4425 
0.9 9.4472 9.4303 7.6473 7.6336 0.1792 
1.0 37.2731 37.2655 35.3006 35.2934 0.0203 

Table for N = 100 

p E(Q) E*(Q) E(Q') E*(Q') ~E(') 

0.1 0.2020 0.1635 0.0020 0.0016 19.0711 
0.2 0.4167 0.3728 0.0167 0.0149 10.5317 
0.3 0.6593 0.6183 0.0593 0.0556 6.2212 
0.4 0.9524 0.9162 0.1524 0.1466 3.7938 
0.5 1.3333 1;3022 0.3333 0.3255 2.3373 
0.6 1.8750 1.8483 0.6750 0.6654 1.4243 
0.7 2.7451 2.7222 1.3451 1.3339 0.8336 
0.8 4.4444 4.4248 2.8444 2.8319 0.4425 
0.9 9.4712 9.4542 7.6712 7.6574 0.1792 
1.0 49.4067 49.3991 47.4277 47.4203 0.0154 

Table for N = 125 

p E(Q) E*(Q) E(Q') E*(Q') %E(') 

0.1 0.2020 0.1635 0.0020 0.0016 19.0711 
0.2 0.4167 0.3728 0.0167 0.0149 10.5317 
0.3 0.6593 0.6183 0.0593 0.0556 6.2212 
0.4 0.9524 0.9162 0.1524 0.1466 3.7938 
0.5 1.3333 1.3022 0.3333 0.3255 2.3373 
0.6 1.8750 1.8483 0.6750 0.6654 1.4243 
0.7 2.7451 2.7222 1.3451 1.3339 0.8336 
0.8 4.4444 4.4248 2.8444 2.8319 0.4425 
0.9 9.4735 9.4565 7.6735 7.6597 0.1792 
1.0 61.4361 61.4284 59.4531 59.4456 0.0125 

Table for N = 150 

p E(Q) E*(Q) E(Q') E*(Q') %E(') 

0.1 0.2020 0.1635 0.0020 0.0016 19.0711 
0.2 0.4167 0.3728 0.0167 0.0149 10.5317 
0.3 0.6593 0.6183 0.0593 0.0556 6.2212 
0.4 0.9524 0.9162 0.1524 0.1466 3.7938 
0.5 1.3333 1.3022 0.3333 0.3255 2.3373 
0.6 1.8750 1.8483 0.6750 0.6654 1.4243 
0.7 2.7451 2.7222 1.3451 1.3339 0.8338 
0.8 4.4444 4.4248 2.8444 2.8319 0.4425 
0.9 9.4737 9.4567 7.6737 7.6599 0.1791 
1.0 73.3614 73.3536 71.3757 71.3681 0.0105 
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Fig. 1. Percentage reductions vs Nwhere 0 = 0.1-0.5. Fig. 2. Percentage reductions vs Nwhere Q = 0.6-1.0. 

p = .999. The last column in these tables represents the percentage reductions ~oE(') in 
the average characteristics for both the systems, and is computed as follows: 

E(.) - ~*(.)  6~(.) 
~ o E ( ' ) -  x 1 0 0 - -  x 100. E(.) E(.) 

Finally we plot these percentage reductions as functions of  N in Figs. 1 and 2. In Fig. 1, 
different plots are for p = .1, .2, .3, .4 and .5. Fig. 2 contains the plots for p = .6, .7, .8, 
.9 and .999 ( ~  1). These tables and plots indicate that for p =< .5, the heterogeneous system 
is better than the homogeneous system whenever the upper limit on queue size is N < 10. 
Whereas for p > .5, M/M~/2/N system is better than the M/M/2/N system for N < 50. 
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